

ENGINEERING PHYSICS CURRICULUM GUIDE

Requirements effective for Fall 2023

The following course schedule represents the suggested curriculum for a typical student in the Engineering Physics Program. Substitutions may be made for some courses on approval of the Chair of the Department of Physics and Astronomy. Students desiring to transfer from another engineering program in their First Year or Second Year may do so without loss of credit or delays in graduation. The considerable flexibility in the Engineering Physics Program allows a student to design an individualized curriculum, with the assistance of her/his advisor.

FIRST YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course		Credits	Course		Credits
PHY 100 PHY 121	Intro to Physics & Astronomy Physics for Engineers &	1	PHY 122	Physics for Engineers & Physical Scientists II	4
	Physical Scientists I	•	ENG 101	College Composition	3
CHY 121	Introduction to Chemistry	3	COS 125	Computer Programming Course ²	3-4
CHY 123	Introduction to Chemistry Lab.	1	or other		4
MAT 126	Calculus I	4	MAT 127	Calculus II	3
	HV/SC & E Elective I ¹	3		Engineering Sequence I ³	
	Total Credits	16			17-18
				Total Credits	

- 1. Human Values/ Social Context and Ethics (HV/SC & E), part of the University General Education Requirement, can be satisfied by a careful selection of at least six three credit courses.
- 2. Students are required to take a computer programming course. COS 125 is recommended/preferred for most concentrations. CIE 115 is preferred for the Civil Engineering concentration, ECE 177 is required for the Computer Engineering concentration, and MEE 125 is an option for the Mechanical Engineering concentration (COS 125 is still recommended). Other course substitutions require the permission of the engineering concentration advisor and approval of the Chair.
- 3. For students who have not chosen an engineering concentration during their first year, it is recommended they discuss possible courses with their advisors. Otherwise, students can follow the suggested options for specific concentrations that follow in this guide.

SECOND YEAR

FALL SEMESTER			SPRING SEMESTER			
Course		Credits	Course		Credits	
PHY 200	Career Prep in Physics & EP I	1	PHY 223	Special Relativity	1	
PHY 236	Introductory Quantum Physics	3	PHY 231	Mathematical Methods in Physics	3	
PHY 261	Physical Measurements Laboratory	2	PHY 241	Computational Physics	3	
MAT 228	Calculus III	4	PHY 262	Electronics	2	
	Engineering Sequence II	3	MAT 259	Differential Equations	3	
	HV/SC & E Elective II ¹	3		Engineering Sequence III	3	
	Total Credits	16		Total Credits	15	

THIRD YEAR

	FALL SEMESTER			SPRING SEMESTER		
Course		Credits	Course		Credit	is
PHY 364	Modern Experimental Physics Lab.	2	PHY 365	Mechanics Laboratory	2	
PHY 451	Mechanics	3	PHY 455	Electricity & Magnetism II	3	
PHY 454	Electricity & Magnetism I	3		MAT Elective ⁴	3	
	Engineering Sequence IV	3		Engineering Sequence V	3	
	HV/SC & E Elective III ¹	3		HV/SC & E Elective IV ¹	3	
				HV/SC & E Elective V ¹	3	
	Total Credits	14		Total Credits	17	7

4. Choose from MAT 262, MAT 332, MAT 434, MAT 452, MAT 454, MAT 459, MAT 471, PHY 574, or approved similar mathematics course. PHY 574 may be counted as either a mathematics elective or a physics elective, but not both.

FOURTH YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course		Credits	Course		Credits
PHY 400	Career Prep in Physics & EP II	1	PHY 482	Project Lab in Phys. II	3
PHY 469	Quantum & Atomic Physics	3		Technical Elective ⁵	3
PHY 472	Geometric and Fourier Optics	3		Engineering Sequence VII	3
PHY 481	Project Lab in Phys. I	3		Engineering Sequence VIII	3
	Engineering Sequence VI	3		Physics Elective ⁶	3
	HV/SC & E Elective VI ¹	3			
	Total Credits	16		Total Credits	15

- 5. A Technical Elective can be an Engineering, Physics, Astronomy, Chemistry, Mathematics, Computer Science, or approved science course, generally at the 300 level or higher.
- 6. Any physics or astronomy course at the 400 level or higher is appropriate.

NOTE: All Engineering Physics students must take a thermodynamics course, typically MEE 230 or CHE 385.

Minimum Total Credits in the Engineering Physics Program: 125

PHYSICS ELECTIVES

FALL SEMESTER			SPRING SEMESTER		
PHY 480	Physics of Materials	3	PHY 447	Molecular Biophysics	3
PHY 496	Field Experience in Physics	1-6	PHY 463	Statistical Mechanics	3
PHY 501	Mechanics	3	PHY 470	Nuclear Physics	2
PHY 574	Methods of Mathematical Physics	3	PHY 471	Nuclear Physics Laboratory	1
AST 451		1-3	PHY 495	Engineering Physics Practice	1-6
	(typically offered spring semester)		PHY 496	Field Experience in Physics	1-6
			AST 451	Astrophysics I	1-3
				(typically offered spring semester)	

Engineering Sequence

The Engineering Sequence consists of *at least* eight three-credit engineering courses, of which a minimum of five courses are from the engineering concentration: biomedical, chemical, civil, computer, electrical, environmental, or mechanical. Included with the eight courses is at least one course from an area other than the engineering concentration. See individual concentrations for specific requirements.

All students must take ECE 209, Fundamentals of Electric Circuits, or ECE 210, Electrical Networks I (for electrical or computer engineering concentrations).

Engineering sequence courses cannot be used for either the computer programming elective or the technical elective. Engineering Technology courses cannot be used for the Engineering Sequence, or the technical electives.

Students, together with their advisor, should use the Undergraduate Catalog to determine the engineering sequence courses in their area of concentration. In the second year particular attention should be made to the prerequisites for the courses likely to be taken in the junior or senior year.

Technical Writing

Engineering Physics students receive instruction and evaluation in technical writing as part of the junior laboratory sequence (PHY 364 and PHY 365). Students not evaluated as satisfactory may be required to take an additional course, such as ENG 317.

Listed below are the core and elective courses and typical engineering course sequence options for different concentrations chosen by students during their first and second year. The sequence may be tailored to fit the needs and interests of the individual student. The sequence must be approved by the student's advisor.

Plan of Study for <u>Biomedical Engineering</u> Concentration

(This program has very limited flexibility in course selection because of the additional chemistry and biology courses.)

Core Courses:	Credits	Offered	Prerequisites
CHY 122 The Molecular Basis of Chemical Change	3	S/Su	C- or better in CHY 121/123
CHY 124 Introduction to Chemistry Laboratory	1	S/Su	Coreq. CHY 122
BEN 201 Fundamentals of Bioengineering	4	F	CHY 121/122, MAT 126/127
BEN 202 Transport Phenomena in Biomedical Systems	4		CHY 121/122, MAT 126/127

In addition to the core courses above, the student must take the following 14 credits of courses plus take at least 2 credits from another engineering discipline area (or substitute up to 4 credits from another engineering discipline area for one of the courses below):

BEN 401 – Dynamic Biomedical Systems	3	F	C- or better in BLE 201/202, PHY 122, MAT 258, BIO 208 or permission
BEN 403 - Instrumentation in Biomedical Engineering	4	Not regular	BLE 201/202, STS 332, ECE 209
CHE 350 - Statistical Process Control and Analysis	3	F/S	MAT 127 or permission
CHE 361 - Chemical Engin. & Biomed Engin. Lab I	3	S/Su	BLE 201/202 or permission
			(or CHE 352/360 or perm.)

Typical **Biomedical Engineering** Sequence

FIRST YEAR

FALL SEMESTER			SPRING SEMESTER			
Course		Credits	Course	Cre	dits	
PHY 100 PHY 121	Intro to Physics & Astronomy Physics for Engineers &	1	PHY 122	Physics for Engineers & Physical Scientists II	4	
CHY 121 CHY 123 MAT 126	Physical Scientists I Intro. to Chemistry Intro. to Chemistry Lab. Calculus I	3 1 4	ENG 101 CHY 122 CHY 124 MAT 127	College Composition Molecular Basis of Chem. Change Molecular Basis of Chem. Change Lab Calculus II	3 3 1 4	
	HV/SC & E Elective I Total Credits	3 16	COS 125	Intro. to Problem Solving Using Computer Programming Total Credits	4 19	

SECOND YEAR

FALL SEMESTER			SPRING SEMESTER			
Course	Credi	its	Course		Credits	
PHY 200	Career Prep in Physics & EP I	1	PHY 223	Special Relativity	1	
PHY 236	Introductory Quantum Physics	3	PHY 231	Mathematical Methods in Physics	3	
PHY 261	Physical Measurements Laboratory	2	PHY 241	Computational Physics	3	
MAT 228	Calculus III	4	PHY 262	Electronics	2	
CHE 200	Fundamentals of Process Eng.	4	BIO 100	Biology	4	
	HV/SC & E Elective II	3	MAT 259	Differential Equations	3	
	Total Credits	16		Total Credits	16	

Plan of Study for <u>Chemical Engineering</u> Concentration

Core Courses: CHY 122 The Molecular Basis of Chemical Change	Credits 3	Offered S/Su	Prerequisites C- or better in CHY 121/123
CHY 124 Introduction to Chemistry Laboratory	1	S/Su	Coreq. CHY 122
CHE 200 Fundamentals of Process Engineering*	4	F	CHY 122, MAT 126, PHY 121 or perm.
CHE 385 Chemical Engineering Thermodynamics I*	3	S	CHB 200, MAT 228 or perm.
In addition to these initial four core courses, the student mu up to 6 credits from another engineering discipline area):	st take the	following 16	credits of courses (or substitute
CHE 352 Process Control*	3	F/Su	MAT 258 or 259 or permission
CHE 360 Elements of Chemical Engineering I*	4	F/Su	CHE 200 or permission
CHE 362 Elements of Chemical Engineering II*	3	S/Su	CHE 360 or permission
CHE 368 Kinetics & Reactor Design*	3	S/Su	CHE 200 or permission
CHE 410 Advanced Materials	3	F	CHY 122, MAT 126, PHY 121, perm.

Note: A Minor in Process Engineering can be obtained by taking the courses marked with an asterisk. The student, however, must still formally declare if they wish to obtain the minor.

Typical Chemical Engineering Sequence

FIRST YEAR

FALL SEMESTER			SPRING SEMESTER			
Course		Credits	Course	Crec	lits	
PHY 100	Intro to Physics & Astronomy	1	PHY 122	Physics for Engineers &	4	
PHY 121	Physics for Engineers &	4		Physical Scientists II		
	Physical Scientists I		COS 125	Intro. to Problem Solving Using	4	
CHY 121	Intro. to Chemistry	3		Computer Programming		
CHY 123	Intro. to Chemistry Lab.	1	CHY 122	Molecular Basis of Chem. Change	3	
MAT 126	Calculus I	4	CHY 124	Molecular Basis of Chem. Change Lab	1	
	HV/SC & E Elective I	3	MAT 127	Calculus II	4	
			ENG 101	College Composition	3	
	Total Credits	16				
				Total Credits	19	

SECOND YEAR

FALL SEMESTER			SPRING SEMESTER			
Course	Cred	its	Course		Credits	
PHY 200	Career Prep in Physics & EP I	1	PHY 223	Special Relativity	1	
PHY 236	Introductory Quantum Physics	3	PHY 231	Mathematical Methods in Physics	3	
PHY 261	Physical Measurements Laboratory	2	PHY 241	Computational Physics	3	
MAT 228	Calculus III	4	PHY 262	Electronics	2	
CHE 200	Fundamentals of Process Eng.	4	MAT 259	Differential Equations	3	
	HV/SC & E Elective II	3	CHE 385	Chem. Eng. Thermodynamics I	3	
	Total Credits	16		Total Credits	15	

Plan of Study for <u>Civil/Environmental</u> Engineering Concentration

Core Courses: MEE 150 Applied Mechanics: Statics	Credits 3	Offered F/S	Prerequisites MAT 126
MEE 251 Strength of Materials	3	F/S	MAT 127 & C or better in MEE 150
CIE 340 Introduction to Structural Analysis	4	F	C or better in MEE 150 & MEE 251
CIE 350 Hydraulics	3	F	C or better in MEE 150, MAT 258/ 259* (*corequisite acceptable)

The required advanced CIE courses cover the technical areas of transportation, environmental engineering, and hydraulics/fluids. Following the initial four core courses, students must choose at a minimum 3 advanced courses. The student is encouraged to take courses from the technical areas listed below, but this is not a requirement. These technical areas will not appear on the students' degree but are intended to provide a level of focus for completion of the degree.

Transportation	CIE 424 Urban Transportation Planning
	CIE 425 Transportation Safety
	CIE 426 Advanced Roadway Design
Structures	CIE 440 Structural Analysis I
	CIE 442 Reinforced Concrete Design
	CIE 443 Structural Steel Design
Environmental	CIE 430 Water Treatment
Engineering	CIE 431 Pollutant Fate and Transport
	CIE 434 Wastewater Process Design
	CIE 439 Solid Waste and Air Pollution

Water resources CIE 450 Open Channel Hydraulics CIE 455 Hydrology CIE 456 Groundwater Hydrology and Hydraulics

Optional Courses:	Credits	Offered	Prerequisites
CIE 365 Soil Mechanics	3	S	MEE 251 or concurrently
CIE 424 Urban Transportation Planning	3	S	C or better in CIE 225
CIE 425 Transportation Safety	3	F	C or better in CIE 225
CIE 426 Advanced Roadway Design	3	F	C or better in CIE 225
CIE 430 Water Treatment	4	F	C or better in CIE 331& CIE 350
CIE 431 Pollutant Fate and Transport	4	Variable	C or better in CIE 350 & MAT 258/259
CIE 434 Wastewater Process Design	4	S	C or better in CIE 331& CIE 350
CIE 439 Solid Waste and Air Pollution	3	S	C or better in CIE 331
CIE 440 Structural Analysis I	4	S	C or better in CIE 340
CIE 442 Structural Design I	4	F	C or better in CIE 340
CIE 443 Structural Steel Design	4	S	CIE 442
CIE 450 Open Channel Hydraulics	3	Variable	C or better in CIE 350
CIE 455 Hydrology	3	F	C or better in CIE 350
CIE 456 Groundwater Hydrology/Hydraulics	3	S	C or better in CIE 350 & MAT 258/259
CIE 460 Geotechnical Engineering	3	F	C or better in CIE 365
CIE 480 Wind Energy Engineering	3	S	MAT 258 & C or better in MEE 251 Corequisite: CIE 350 or MEE 360

Typical Civil And Environmental Engineering Sequence

FIRST YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course		Credits	Course		Credits
PHY 100 PHY 121	Intro to Physics & Astronomy Physics for Engineers &	1 4	PHY 122	Physics for Engineers & Physical Scientists II	4
CHY 121	Physical Scientists I Intro. to Chemistry	3	ENG 101 COS 125	College Composition Intro. to Problem Solving Using	3
CHY 123 MAT 126	Intro. to Chemistry Lab. Calculus I	1 4	or CIE 115	Computer Programming OR Computers in Civil Engineering	3-4
	HV/SC & E Elective I	3	MAT 127	Calculus II	4
	Total Credits	16	MEE 150	Statics	3
				Credits	17-18

SECOND YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course	Credi	ts	Course		Credits
PHY 200	Career Prep in Physics & EP I	1	PHY 223	Special Relativity	1
PHY 236	Introductory Quantum Physics	3	PHY 231	Mathematical Methods in Physics	3
PHY 261	Physical Measurements Laboratory	2	PHY 241	Computational Physics	3
MAT 228	Calculus III	4	MAT 259	Differential Equations	3
MEE 230	Thermodynamics I	3	MEE 251	Strength of Materials	3
	HV/SC & E Elective II	3		HV/SC & E Elective III	3
	Total Credits	16		Total Credits	16

Plan of Study for <u>Computer Engineering</u> Concentration

Core Courses: ECE 210 Electric Circuits	Credits 3	Offered F/S	Prerequisites MAT 127; Coreq. PHY 122
ECE 271 Microcomp. Architecture and App.	3	S	ECE 177
ECE 275 Sequential Logic Systems	3	F	ECE 177
ECE 471 Embedded Systems	3	F	ECE 271

Following the initial 4 courses, students must choose 4 more Engineering courses, with one of these courses from outside the ECE department (i.e. a non-ECE course). The student is encouraged to take courses from the technical areas listed below, but this is not a requirement. These technical areas will not appear on the students' degree but are intended to provide a level of focus for completion of the degree.

Embedded Control	ECE 477 Hardware Applications Using C
	ECE 478 Industrial Computer Control
High-Performance	ECE 331 Intro to Unix Systems Admin
Computing Networking	ECE 435 Network Engineering
	ECE 473 Computer Architecture & Org.
	ECE 477 Hardware Applications Using C
* Note: Of these five co	purses, ECE 473 and ECE 477 are strongly recommended by the ECE department.
Dahatian	FOF 244 Circula and Outbane

Robotics	ECE 314 Signals and Systems
	ECE 414 Feedback Control Systems
	ECE 417 Introduction to Robotics
	ECE 477 Hardware Applications Using C

***Note:** The College of Engineering offers a Minor in Robotics. The student can acquire the minor in Robotics by careful selection of courses taken. Please refer to the Course Catalog for exact minor requirements (<u>Robotics minor</u>).

Optional Courses:	Credits	Offered	Prerequisites
ECE 314 Signals and Systems	3	S	MAT 258, at least a C- in ECE 210
ECE 331 Intro to Unix Syst Admin	3	S	ECE 177
ECE 414 Feedback Control Systems	3	S	ECE 314
ECE 417 Introduction to Robotics	3	F	ECE 177, MAT 228
ECE 435 Network Engineering	3	F	COS 331 or ECE 331 or ECE 471
ECE 473 Computer Architecture & Org.	4	F	ECE 275
ECE 477 Hardware App. Using C	3	S	ECE 271
ECE 478 Industrial Comp. Control	3	Variable	ECE 271
ECE 486 Digital Signal Processing	4	S	ECE 177 and ECE 314

Typical Computer Engineering Sequence

FIRST YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course	Credits		Course		Credits
PHY 100	Intro to Physics & Astronomy	1	PHY 122	Physics for Engineers &	4
PHY 121	Physics for Engineers &	4		Physical Scientists II	
	Physical Scientists I		ENG 101	College Composition	3
MAT 126	Calculus I	4	MAT 127	Calculus II	4
CHY 121	Intro. to Chemistry	3	ECE 177	Intro. To Programming for Eng.	3
CHY 123	Intro. to Chemistry Lab.	1		HV/SC & E Elective II	3
	HV/SC & E Elective I	3			
	Total Credits	16		Total Credits	17
SECOND	YEAR	·	-		•

	FALL SEMESTER			SPRING SEMESTER	
Course	Cred	lits	Course	(Credits
PHY 200	Career Prep in Physics & EP I	1	PHY 223	Special Relativity	1
PHY 236	Introductory Quantum Physics	3	PHY 231	Mathematical Methods in Physics	3
PHY 261	Physical Measurements Laboratory	2	PHY 241	Computational Physics	3
MAT 228	Calculus III	4	PHY 262	Electronics	2
ECE 210	Electrical Networks I	3	MAT 259	Differential Equations	3
	HV/SC & E Elective III	3	ECE 271	Microcomputer Architecture & Applic.	3
	Total Credits	16		Total Credits	15

Plan of Study for *Electrical Engineering* Concentration

Core Courses:	Credits	Offered	Prerequisites
ECE 210 Electric Circuits	3	F/S	MAT 127; coreq. PHY 122
ECE 214 Electrical Circuits Lab.	3	S	ECE 210
ECE 314 Signals and Systems	3	S	MAT 258, at least a C- in ECE 210
ECE 342 Electronics I	4	F	ECE 214, at least a C- in ECE 210

*Note: Taking ECE 342 will satisfy the electronics requirement; students should NOT take PHY 262.

Following the initial 4 courses, students must choose 4 more Engineering courses, with one of these courses from outside the ECE department (i.e. a non-ECE course). The student is encouraged to take courses from the technical areas listed below, but this is not a requirement. These technical areas will not appear on the students' degree but are intended to provide a level of focus for completion of the degree.

Power & Alternative	ECE 323 Electric Power Conversion
Energy	ECE 427 Electric Power Systems
	ECE 467 Solar Cells and Their Applications

Microelectronics & Circuits	ECE 444 Analog Integrated Circuit Design ECE 445 Analysis & Design of Digital Integrated Circuits ECE 462 Introduction to Basic Semiconductor Devices ECE 464 Microelectronics Science and Engineering ECE 484 Communications Engineering
State & Sensor	ECE 453 Microwave Engineering ECE 462 Introduction to Basic Semiconductor Devices ECE 464 Microelectronics Science and Engineering ECE 465 Introduction to Sensors ECE 466 Sensor Technology and Instrumentation

Optional Courses:	Credits	Offered	Prerequisites
ECE 316 Random Signal Analysis	3	F	MAT 228
ECE 323 Electric Power Conversion	3	F	ECE 214, at least a C- in ECE 210
ECE 427 Electric Power Systems	3	S	At least a C- in ECE 210
ECE 343 Electronics II	4	S	ECE 342
ECE 351 Fields and Waves	3	S	MAT 228 and C- or better in ECE 210.
ECE 427 Electric Power Systems	3	S	at least a C- in ECE 210
ECE 444 Analog Integrated Circuits	3	S	ECE 314 and ECE 343
ECE 445 Analysis & Design of Digital Integrated Circuits	3	F	ECE 342
ECE 453 Microwave Engineering	4	S	ECE 351
ECE 462 Introduction to Basic Semiconductor Devices	3	Variable	CHY 121 and PHY 122, Coreq: MAT 258
ECE 464 Microelectronics Sci. & Engineering	3	Not regular	CHY 121, PHY 122, Coreq: MAT 258
ECE 465 Introduction to Sensors	3	S/Su	Jr. standing
ECE 466 Sensor Technology & Instrumentatio	n 4	Not regular	ECE 465
ECE 467 Solar Cells & Their Applications	3	Variable	ECE 209 or ECE 210 or permission
ECE 484 Communications Engineering	3	F	ECE 314 and ECE 316

Typical *Electrical Engineering* Sequence

FIRST YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course		Credits	Course		Credits
PHY 100 PHY 121 MAT 126	Intro to Physics & Astronomy Physics for Engineers & Physical Scientists I Calculus I	1 4 4	PHY 122 ENG 101 MAT 127	Physics for Engineers & Physical Scientists II College Composition Calculus II	4
CHY 121 CHY 123	Intro. to Chemistry Intro. to Chemistry Lab. HV/SC & E Elective I	3 1 3	COS 125	Intro. to Problem Solving Using Computer Programming HV/SC & E Elective II	4
	Total Credits	16		Total Credits	18

SECOND YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course		Credits	Course		Credits
PHY 200	Career Prep in Physics & EP I	1	PHY 223	Special Relativity	1
PHY 236	Introductory Quantum Physics	3	PHY 231	Mathematical Methods in Physics	3
PHY 261	Physical Measurements Laboratory	2	PHY 241	Computational Physics	3
MAT 228	Calculus III	4	MAT 259	Differential Equations	3
ECE 210	Electric Circuits	3	ECE 214	Electrical Networks Laboratory	3
	HV/SC & E Elective III	3	ECE 314	Signals & Systems	3
	Total Credits	16		Total Credits	16

Plan of Study for *Mechanical Engineering* Concentration

Core Courses:	Credits	Offered	Prerequisites
MEE 150 Applied Mechanics: Statics	3	S	MAT 126
MEE 230 Thermodynamics I	3	F/S	MAT 127
MEE 251 Strength of Materials	3	F/S	MAT 127 & MEE 150
MEE 270 Applied Mechanics: Dynamics	3	F/S	MEE 150/251, Coreq. MAT 228
MEE 360 Fluid Mechanics	3	F	MEE 230 & 270; Coreq. MAT 258/259

*Note: The computer programming requirement may be satisfied by COS 125 or MEE 125. Also, all MEE prerequisites require a C or better.

Following the initial 5 courses, students must choose 2 or more advanced classes. The student is encouraged to take courses from the technical areas listed below, but this is not a requirement. These technical areas will not appear on the students' degree but are intended to provide a level of focus for completion of the degree.

Energy Systems	MEE 432 Heat Transfer MEE 433 Solar Thermal Engineering MEE 462 Fluid Mechanics II MEE 483 Design of Turbomachinery MEE 484 Power Plant Design
Mechanical Design	MEE 320 Materials Engineering and Science MEE 450 Intro Mechanics of Comp Materials MEE 455 Advanced Strength of Materials MEE 471 Mechanical Vibrations
Mechanical Robotics	MEE 380 Design I MEE 381 Design II MEE 370 Modeling, Analysis and Control of Mechanical Systems MEE 444 Robot Dynamics and Control

Optional Courses	Credits	Offered	Prerequisites
MEE 320 Materials Engineering and Science	3	S	MEE 230 & 251
MEE 330 Manufacturing Engineering	3	S	MEE 120
MEE 348 Intro to Flight	3	S	MAT 258, PHY 121, & MEE 125 (or COS 125)

MEE 370 Modeling, Anal.& Ctrl. of Mech Sys	3
MEE 380 Design I	3
MEE 381 Design II	3
MEE 432 Heat Transfer	3
MEE 433 Solar-Thermal Engineering	3
MEE 444 Robot Dynamics and Control	3
MEE 448 Fixed Wing Aircraft Design	3
MEE 450 Mechanics of Comp Materials	3
MEE 452 Aircraft and Automobile Structures	3
MEE 455 Advanced Strength of Materials	3
MEE 459 Engineering Optimization	3
MEE 456 Intro to Finite Element Method	3
MEE 462 Fluid Mechanics II	3
MEE 463 Applied Computational Fluid Dynamics	3
MEE 471 Mechanical Vibrations	3
MEE 483 Turbomachine Design	3
MEE 484 Power Plant Design & Engineering	3
MEE 490 Modern Control Theory and Applications	3

F	ECE 209, MAT 258/259, MEE 270
F	MEE 270
S	MEE 120, MEE 251
F	MAT 258/259, MEE 360
Not regular	MEE 230
F/S	MEE 270 & 380
S (odd yrs)	MEE 120, MEE 251, MEE 270, & MEE 360
S (even yrs	s) MEE 251
S	
F	MEE 251
S	MAT 228 & MAT 258
S	MAT 258/259, MEE 251
S (odd yrs)	MEE 360
S	MEE 360 or equivalent
S	MAT 258/259, MEE 270
Not regular	MEE 230 & 360
Not regular	MEE 230 & 231
S	MEE 370

Typical Mechanical Engineering Sequence

FIRST YEAR

	FALL SEMESTER			SPRING SEMESTER	
Course	Credits		Course	Credits	
PHY 100 PHY 121	Intro to Physics & Astronomy Physics for Engineers &	1 4	PHY 122	Physics for Engineers & Physical Scientists II	4
	Physical Scientists I		ENG 101	College Composition	3
CHY 121	Intro. to Chemistry	3	COS 125	Intro. to Problem Solving Using	4
CHY 123	Intro. to Chemistry Lab.	1	or	Computer Programming	or
MAT 126	Calculus I	4	MEE 125	Computational Tools in Mechanical	3
	HV/SC & E Elective I	3		Engineering	
	Total Credits	16	MAT 127	Calculus II	4
			MEE 150	Statics	3
				Total Credits	17-18

SECOND YEAR

	FALL SEMESTER			<u>SPRING SEMESTER</u>	
Course	Credits		Course	Credits	
PHY 200	Career Prep in Physics & EP I	1	PHY 223	Special Relativity	1
PHY 236	Introductory Quantum Physics	3	PHY 231	Mathematical Methods in Physics	3
PHY 261	Physical Measurements Laboratory	2	PHY 241	Computational Physics	3
MAT 228	Calculus III	4	PHY 262	Electronics	2
MEE 251	Strength of Materials	3	MAT 259	Differential Equations	3
	HV/SC & E Elective II	3	MEE 230	Thermodynamics I	3
	Total Credits	16		Total Credits	15

ENGINEERING PHYSICS STUDENT SUMMARY RECORD

PHYSICS COURSES CR DATE GRADE PHY 100 1	MATH COURSES CR DATE GRADE MAT 126 4
PHY 364 2	GEN ED HV&SC REQUIREMENTS (AREA) CR DATE GRADE 1
ENGINEERING SEQUENCE COURSES (at least 5 courses from the same engineering concentration) outside the engineering concentration) CR DATE GRADE 1 ECE 209 (or 210) 3	a. Western Cultural Tradition b. Social Contexts & Institutions c. Cultural Diversity & International Perspectives d. Population & the Environment e. Artistic and Creative Expression f. Ethics ELECTIVES <u>CR DATE GRADE</u> Tech Elective
SUBTOTAL (24 required) OTHER COURSES DATE GRADE ENG 101 3	Free Elective (not required) SUBTOTAL (2-3 required)
Programming Course 3-4 SUBTOTAL (10-11 required)	DEGREE REQUIREMENTS Total credits must be 125 or greater.
Course taken to satisfy thermodynamics requirement FINAL GPA IN MAJOR (all physics plus eight engineering	
sequence courses require a 2.00 minimum) = ((2.00 MINIMUM) =