Plan of Study for Mechanical Engineering Concentration

Core Courses: [All are 3 Credits]

- MEE 150 - Applied Mechanics: Statics
- MEE 230 - Thermodynamics I
- MEE 251 - Strength of Materials
- MEE 270 - Applied Mechanics: Dynamics

Following the initial four courses, students can choose twelve credits of more advanced classes, focused in a technical area that they find interesting. Examples of these technical areas and courses that can be taken to satisfy the advanced course requirements in each area include:

- Energy Systems – MEE 360 Fluid Mechanics
  - MEE 432 Heat Transfer
  - MEE 433 Solar Thermal Engineering
  - MEE 462 Fluid Mechanics II
  - MEE 483 Design of Turbomachinery
  - MEE 484 Power Plant Design (Prerequisite: MEE 231)

- Mechanical Design – MEE 320 Materials Engineering and Science
  - MEE 450 Intro Mechanics of Comp Materials
  - MEE 455 Adv Strength of Materials
  - MEE 471 Mechanical Vibrations

- Dynamics and Control – MEE 370 Modeling, Analysis and Control of Mech Systems
  - MEE 445 Aeronautics

- Aerodynamics – MEE 360 Fluid Mechanics
  - MEE 462 Fluid Mechanics II
  - MEE 455 Aeronautics (a prerequisite is COS 215/220)
  - MEE 446 Astronautics

- Mechanical Robotics – MEE 380 Design I
  - MEE 381 Design II
  - MEE 370 Modeling, Analysis and Control of Mech Systems
  - MEE 444 Robot Dynamics and Control
Optional Courses: [All are 3 Credits]

- MEE 320 - Materials Engineering and Science
- MEE 360 - Fluid Mechanics
- MEE 380 – Design I
- MEE 381 - Design II
- MEE 432 - Heat Transfer
- MEE 433 - Solar-Thermal Engineering
- MEE 444 – Robot Dynamics and Control
- MEE 445 - Aeronautics
- MEE 446 - Astronautics
- MEE 450 - Intro to Mech. of Comp Materials
- MEE 455 - Advanced Strength of Materials
- MEE 456 - Intro to Finite Element Method
- MEE 462 - Fluid Mechanics II
- MEE 471 - Mechanical Vibrations
- MEE 483 - Turbomachine Design
- MEE 484 - Power Plant Design and Engineering